Grundlagen

÷	Pegel	Leistungs- verhältnis	Spannungs- verhältnis	Kenn- farbe	Wert	Multi- plikator	Toleranz
$ \begin{array}{c} \vdots \\ 10^{-3} = 0,001 \\ 10^{-2} = 0,01 \\ 10^{-1} = 0,1 \\ 10^{0} = 1 \\ 10^{1} = 10 \\ 10^{2} = 100 \\ 10^{3} = 1000 \\ \vdots \end{array} $	-20 dB -10 dB -6 dB -3 dB -1 dB 0 dB 1 dB 3 dB 6 dB 10 dB	0,01 0,1 0,25 0,5 0,8 1 1,26 2 4	0,1 0,32 0,5 0,71 0,89 1 1,12 1,41 2 3,16	Silber Gold schwarz braun rot orange gelb grün blau violett grau weiß	0 1 2 3 4 5 6 7 8	$ \begin{array}{c} 10^{-2} \\ 10^{-1} \\ 10^{-0} \\ 10^{1} \\ 10^{2} \\ 10^{3} \\ 10^{4} \\ 10^{5} \\ 10^{6} \\ 10^{7} \\ 10^{8} \\ 10^{9} \end{array} $	±10% ±5% - ±1% ±2% - ±0,5 ±0,1%
·	20 dB	100	10	keine	-	-	±20%

Wertkennzeichnung durch Buchstaben

p	Pico	10 ⁻¹²
n	Nano	10 ⁻⁹

μ	Mikro	10 ⁻⁶
m	Milli	10 ⁻³

		10 ⁰
k	Kilo	10^{3}

M	Mega	10 ⁶
G	Giga	10 ⁹

Ohmsches Gesetz

 $U = I \cdot R$

Ladungsmenge

 $Q = I \cdot t$

Leistung

 $P = U \cdot I$

Arbeit (Energie)

 $W = P \cdot t$

Widerstände in Reihenschaltung

Spannungsteiler

$$\begin{split} R_G &= R_1 + R_2 + R_3 + \dots \cdot R_n \\ \frac{U_1}{U_2} &= \frac{R_1}{R_2} \; ; \qquad \qquad \frac{U_2}{U_G} = \frac{R_2}{R_1 + R_2} \end{split}$$

Widerstände in Parallelschaltung

 $\frac{1}{R_G} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$

bei 2 Widerständen

 $\frac{I_2}{I_1} = \frac{R_1}{R_2}$; $I_G = I_1 + I_2$

 $R_G = \frac{R_1 \cdot R_2}{R_1 + R_2}$

bei n gleichen Widerständen R

 $R_G = \frac{R}{n}$

Effektiv- und Spitzenwerte bei sinusförmiger Wechselspannung

 $U_{\mathrm{max}} = \sqrt{2} \cdot U_{\mathrm{eff}}$; $U_{\mathrm{eff}} = 0.707 \cdot U_{\mathrm{max}}$; $U_{\mathrm{ss}} = 2 \cdot U_{\mathrm{max}}$

Innenwiderstand

 $R_i = \frac{\Delta U}{\Delta I}$

Frequenz und Wellenlänge

$$c = f \cdot \lambda$$
 mit $c = c_0 \approx 3.10^8 \frac{\text{m}}{\text{s}}$

zugeschnittene Formel

$$f [MHz] = \frac{300}{\lambda [m]}$$

Frequenz und Periodendauer

$$T = \frac{1}{f}$$

Induktiver Widerstand

$$X_L = 2 \cdot \pi \cdot f \cdot L$$

Induktivitäten in Reihenschaltung

$$L_G = L_1 + L_2 + L_3 + \dots L_n$$

Induktivitäten in Parallelschaltung

$$\frac{1}{L_G} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots \frac{1}{L_n}$$

Induktivität

$$L = \frac{\mu \cdot A}{l_m} N^2 \qquad \mu = \mu_0 \cdot \mu_r$$

$$L = N^2 \cdot A_I$$

 $\operatorname{mit} A_{\operatorname{L}}$ in nH

Übertrager

$$\frac{N_1}{N_2} = \frac{U_1}{U_2}$$

Kapazitiver Widerstand

$$X_C = \frac{1}{2 \cdot \pi \cdot f \cdot C}$$

Kondensatoren in Reihenschaltung

$$\frac{1}{C_G} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots \frac{1}{C_n}$$

bei zwei Kondensatoren

$$C_G = \frac{C_1 \cdot C_2}{C_1 + C_2}$$

Kondensatoren in Parallelschaltung

$$C_G = C_1 + C_2 + C_3 + \dots + C_n$$

Kapazität eines Kondensators

$$C = \varepsilon \cdot \frac{A}{d} \qquad \varepsilon = \varepsilon_0 \cdot \varepsilon_r$$

Elektrische Feldstärke

$$E = \frac{U}{d}$$

Schwingkreis

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

Spiegelfrequenz / Zwischenfrequenz

$$\begin{split} f_S &= f_E + 2 \cdot f_{ZF} & \text{für } f_O > f_E \\ f_S &= f_E - 2 \cdot f_{ZF} & \text{für } f_O < f_E \end{split}$$

für
$$f_O > f_E$$

für $f_O < f_E$

 $f_{ZF} = f_E \pm f_O$

$$a = 20 \cdot \lg \frac{U_1}{U_2}$$
 in dB; $a = 10 \cdot \lg \frac{P_1}{P_2}$ in dB

$$a = 10 \cdot \lg \frac{P_1}{P_2}$$
 in dE

$$g = 20 \cdot \lg \frac{U_2}{U_1}$$
 in dB; $g = 10 \cdot \lg \frac{P_2}{P_1}$ in dB

$$g = 10 \cdot \lg \frac{P_2}{P_1} \quad \text{in dB}$$

Leistungspegel

$$p = 10 \cdot \lg \frac{P}{P_0}$$
 in dBm

Absoluter Pegel: $0 \text{ dBm liegt bei } P_0 = 1 \text{ mW}$

ERP/EIRP

$$P_{\text{ERP}} = (P_{\text{Sender}} - P_{\text{Verluste}}) \cdot G_{\text{Antenne Dipol}}$$

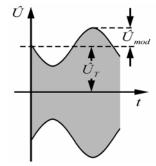
$$P_{\text{EIRP}} = (P_{\text{Sender}} - P_{\text{Verluste}}) \cdot G_{\text{Antenne isotrop}}$$

Antennengewinne gegenüber dem isotropen Kugelstrahler

	Gewinnfaktor	Gewinn in dBi
Dipol	1,64	2,15 dBi
λ/4 Vertikal	3,28	5,15 dBi

$$E = \frac{\sqrt{30\Omega \cdot P_{EIRP}}}{r}$$

Sicherheitsabstand*) (zugeschnittene Formel)


Feldstärke im Fernfeld einer Antenne*)

$$r = \frac{\sqrt{30 \cdot P_{EIRP}[\mathbf{w}]}}{E[\frac{\mathbf{v}}{\mathbf{m}}]}$$

Amplitudenmodulation

$$m = rac{U_{mod}}{\hat{U}_T} \; ;$$
 $B = 2 \cdot f_{mod \ max}$

Bandbreite
$$B = 2$$

Frequenzmodulation

$$m = \frac{\Delta f_T}{f_{mod}}$$

Ungefähre Bandbreite (Carson-Bandbreite)*)

$$B = 2 \cdot (\Delta f_T + f_{mod \, max})$$

Stehwellenverhältnis (VSWR)

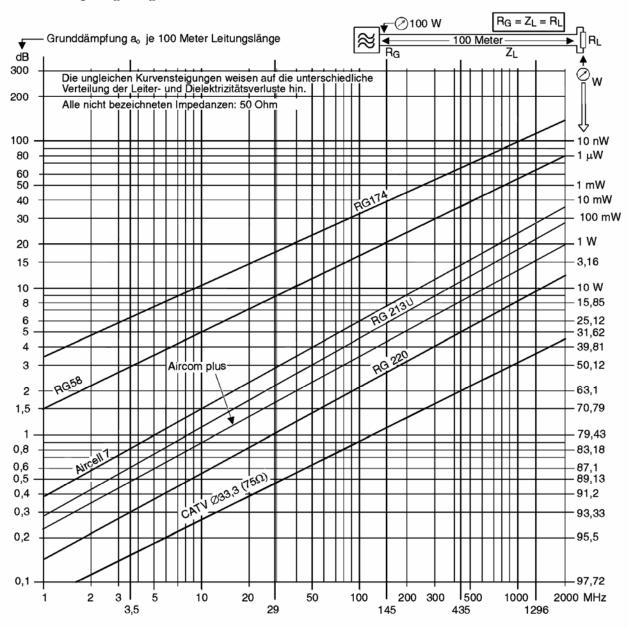
$$s = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{U_{v} + U_{r}}{U_{v} - U_{r}}$$

Rücklaufende Leistung

$$P_r = P_v \cdot \left(\frac{s-1}{s+1}\right)^2 \text{ mit } P_r \neq P_v$$

Wirkungsgrad

$$\eta = \frac{P_{ab}}{P} \,,$$


$$\eta = \frac{P_{ab}}{P_{zu}};$$
 $\eta_{[\%]} = \frac{P_{ab}}{P_{zu}} \cdot 100\%;$
 $P_{ab} = P_{zu} - P_{V}$

$$P_{ab} = P_{zu} - P_V$$

^{*)} für Freiraumausbreitung ab $r > \frac{\lambda}{2 + \pi}$

^{*)} Bandbreite, in der etwa 99 % der Gesamtleistung eines FM-Signals enthalten sind. Um Nachbarkanalstörungen ausreichend zu vermindern sind jedoch höhere Frequenzabstände erforderlich.

Kabeldämpfungsdiagramm

Grunddämpfung verschiedener gebräuchlicher Koaxleitungen in Abhängigkeit von der Betriebsfrequenz für eine Länge von 100 m.